点击立即使用跳转到数据决策系统登录页。
数据分析V10 App 中内置了两个服务器:FineReport 服务器和 FineBI 服务器。如下图所示:
这是帆软移动端在线 Demo 的一些展示模板,用户可点击登录,浏览并了解 FineReport 和 FineBI 的相关功能。
数据分析软件种类繁多,使用难度、场景、效率不一。日常的数据分析,Excel就能满足大部分需求,不过在数据量越来越大、维度越来越多、分析越来越复杂的今天,仅靠Excel解决也不现实,不过不用担心,市面上可分析数据的软件是越来越多了,小编给大家介绍几类数据分析软件,包括以下几类:
1.数据处理软件Excel和MySQL
Excel:在Excel,需要重点了解数据处理的重要技巧及函数的应用,特别是数据清理技术的应用。这项运用能对数据去伪存真,掌握数据主动权,全面掌控数据,Excel数据透视表的应用重在挖掘隐藏的数据价值,轻松整合海量数据,各种图表类型的制作技巧及Power Query、Power Pivot的应用可展现数据可视化效果。
数据库MySQL是一种关系数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性,MySQL所使用的SQL语言是用于访问数据库的最常用标准化语言,MySQL软件采用了双授权政策,分为社区版和商业版,由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发都选择MySQL作为网站数据库。
2.数据可视化Smartbi和Echarts
Smartbi设计过程可视化,鼠标拖拉拽即可快速完成数据集准备、可视化探索和仪表盘的制作,丰富的可视化展示,轻松制作BI看板,丰富的交互控件和图表组件,且不受维度、度量的限制,支持多数据来源,布局灵活,支持业务主题和自助数据集,双布局设计,跨屏发布到APP,支持流式布局。轻量化的BI软件,部署方便,走多维分析方向。能够快速制作数据可视化图表。
一、酷传
酷传平台自称是国内大的手机应用发布、统计监测平台,内容非常丰富。一站式发布、监控、推广、学习,非常适合app运营新手。其中通过监控平台,可以看到苹果实时榜单、榜单更新监测、排名上升或下降快、实时热搜榜、搜索指数排行等。
二、七麦数据(ASO100)
通过这个平台,同样随时随地获取榜单、关键词覆盖、搜索指数等ASO核心数据。助力精准定位,制定优化策略!有苹果官方数据接口,提供榜单500实时数据查询,随时获取新排名变化,数据准确而全面。而且可以通过平台的 AI 系统,依托海量大数据,5分钟即可生成更有效的定制式关键词方案!智投系统:大数据与人工智能结合,实现选词、优化、投放、效果追踪等一站式智能服务。
三、蝉大师
蝉大师是市场上能够跟踪中国苹果和安卓市场表现的应用大数据平台。一站式实时跟踪您的应用在各个市场渠道的表现。可对超过180万iOS应用和400万安卓应用的数据跟踪,涵盖下载量、关键词覆盖数量、关键词搜索量等数据。同样可以做竞品对比:全面对比分析产品和竞品的榜单排名、关键字覆盖、排名、评分、评论、更新频率等,知己知彼,APP运营推广无往不利。
有哪些好的app数据分析工具推荐吗
未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
App数据分析,有没有好的工具推荐?
方法/步骤
行业数据
行业数据对于一个APP来说,至关重要。了解行业数据,可以知道自己的APP在整个行业的水平,可以从新增用户、活跃用户、启动次数、使用时长等多个维度去对比自己产品与行业平均水平的差异以及自己产品的对应的指标在整个行业的排名,从而知道自己产品的不足之处。这种纵向的对比,会让自己的产品定位、发展方向更加清晰。
评估渠道效果
在国内,获取用户的渠道是非常多的,如微博、微信、运营商商店、操作系统商店、应用商店、手机厂商预装、CPA广告、交叉推广、限时免费等等。看一个APP的数据,首先要知道用户从哪里来,哪里的用户质量最高,这样开发者就会面临一个选择和评估渠道的难问题。但是通过统计分析工具,开发者可以从多个维度的数据来对比不同渠道的效果,比如从新增用户、活跃用户、次日留存率、单次使用时长等角度对比不同来源的用户,这样就可以根据数据找到最适合自身的渠道,从而获得最好的推广效果。
用户分析
产品吸引到用户下载和使用之后,首先要知道的就是用户是谁。所以,我们需要详尽地了解到用户的设备终端类型、网络及运营商、地域的分布特征。这些数据可以帮助了解用户的属性,在产品改进以及产品推广中,就可以充分利用这些数据制定精准的策略。
用户行为分析
在关注完用户的属性后,我们还要高度关注用户在应用内的行为,因为这些行为最终决定着产品所能够带来的价值。开发者可以通过设置自定义事件以及漏斗来关注应用内每一步的转化率,以及转化率对收入水平的影响。通过分析事件和漏斗数据,可以针对性的优化转化率低的步骤,切实提高整体转化水平。
5
产品受欢迎程度
在了解了用户的行为之后,我们应该看一下自己的产品是否足够受欢迎,这是一个应用保持生命力的根本。开发者可以从留存用户、用户参与度(使用时长、使用频率、访问页面、使用间隔)等维度评价用户粘度。进行数据对比分析的时候,要充分利用时间控件和渠道控件,可以对比不同时段不同渠道的用户粘度,了解运营推广手段对不同渠道的效果。
如果以上5点的数据都很漂亮,说明你的APP已经做得相当不错了。当然,如果你的APP还没有给你带来收入,那么你仍然有一段较长的路要走。
app日活数据分析工具有哪些?
app日活数据分析工具有上海风述科技的app先知。
APP运营数据分析工具有哪些?
目前国内发展不错的可以监测web、app、流媒体等多种应用性能监测服务,叫“云测宝”。
云测试、友盟
云测试主要为开发者提供自动化的移动APP测试,包括功能、UI、性能、稳定性、安全和竞争测试,返回包括日志和截图的详细测试报告,支持iOS和Android两大平台。
云测宝主要通过分布全球真实网络中的真实终端,监测用户访问移动应用App、HTML5、移动Web的真实体验数据,从最终用户的视角跨越移动设备、网络和国家地区范围,从移动“端”侧对移动互联网的“云”服务性能进行监测与评估,使移动业务用户所获得体验效果达到最大。
友盟是为中国开发者定制的灵活、简单、免费、跨平台的移动应用统计分析工具。
三个产品从不同的
数据分析工具有哪些 python
IPython
IPython 是一个在多种编程语言之间进行交互计算的命令行 shell,最开始是用 python 开发的,提供增强的内省,富媒体,扩展的 shell
语法,tab 补全,丰富的历史等功能。IPython 提供了如下特性:
更强的交互 shell(基于 Qt 的终端)
一个基于浏览器的记事本,支持代码,纯文本,数学公式,内置图表和其他富媒体
支持交互数据可视化和图形界面工具
灵活,可嵌入解释器加载到任意一个自有工程里
简单易用,用于并行计算的高性能工具
由数据分析总监,Galvanize 专家 Nir Kaldero 提供。
GraphLab Greate 是一个 Python 库,由 C++ 引擎支持,可以快速构建大型高性能数据产品。
这有一些关于 GraphLab Greate 的特点:
可以在您的计算机上以交互的速度分析以 T 为计量单位的数据量。
在单一平台上可以分析表格数据、曲线、文字、图像。
最新的机器学习算法包括深度学习,进化树和 factorization machines 理论。
可以用 Hadoop Yarn 或者 EC2 聚类在你的笔记本或者分布系统上运行同样的代码。
借助于灵活的 API 函数专注于任务或者机器学习。
在云上用预测服务便捷地配置数据产品。
为探索和产品监测创建可视化的数据。
由 Galvanize 数据科学家 Benjamin Skrainka 提供。
Pandas
pandas 是一个开源的软件,它具有 BSD 的开源许可,为 Python
编程语言提供高性能,易用数据结构和数据分析工具。在数据改动和数据预处理方面,Python 早已名声显赫,但是在数据分析与建模方面,Python
是个短板。Pands 软件就填补了这个空白,能让你用 Python 方便地进行你所有数据的处理,而不用转而选择更主流的专业语言,例如 R 语言。
整合了劲爆的 IPyton 工具包和其他的库,它在 Python 中进行数据分析的开发环境在处理性能,速度,和兼容方面都性能卓越。Pands
不会执行重要的建模函数超出线性回归和面板回归;对于这些,参考 stat *** odel 统计建模工具和 scikit-learn 库。为了把 Python
打造成顶级的统计建模分析环境,我们需要进一步努力,但是我们已经奋斗在这条路上了。
由 Galvanize 专家,数据科学家 Nir Kaldero 提供。
PuLP
线性编程是一种优化,其中一个对象函数被最大程度地限制了。PuLP 是一个用 Python
编写的线性编程模型。它能产生线性文件,能调用高度优化的求解器,GLPK,COIN CLP/CBC,CPLEX,和GUROBI,来求解这些线性问题。
由 Galvanize 数据科学家 Isaac Laughlin 提供
Matplotlib
matplotlib 是基于 Python 的
2D(数据)绘图库,它产生(输出)出版级质量的图表,用于各种打印纸质的原件格式和跨平台的交互式环境。matplotlib 既可以用在 python 脚本,
python 和 ipython 的 shell 界面 (ala MATLAB? 或 Mathematica?),web 应用服务器,和6类 GUI
工具箱。
matplotlib 尝试使容易事情变得更容易,使困难事情变为可能。你只需要少量几行代码,就可以生成图表,直方图,能量光谱(power
spectra),柱状图,errorcharts,散点图(scatterplots)等,。
为简化数据绘图,pyplot 提供一个类 MATLAB 的接口界面,尤其是它与 IPython
共同使用时。对于高级用户,你可以完全定制包括线型,字体属性,坐标属性等,借助面向对象接口界面,或项 MATLAB 用户提供类似(MATLAB)的界面。
Galvanize 公司的首席科学官 Mike Tamir 供稿。
Scikit-Learn
Scikit-Learn 是一个简单有效地数据挖掘和数据分析工具(库)。关于最值得一提的是,它人人可用,重复用于多种语境。它基于
NumPy,SciPy 和 mathplotlib 等构建。Scikit 采用开源的 BSD 授权协议,同时也可用于商业。Scikit-Learn
具备如下特性:
分类(Classification) – 识别鉴定一个对象属于哪一类别
回归(Regression) – 预测对象关联的连续值属性
聚类(Clustering) – 类似对象自动分组集合
降维(Dimensionality Reduction) – 减少需要考虑的随机变量数量
模型选择(Model Selection) –比较、验证和选择参数和模型
预处理(Preprocessing) – 特征提取和规范化
Galvanize 公司数据科学讲师,Isaac Laughlin提供
Spark
Spark 由一个驱动程序构成,它运行用户的 main 函数并在聚类上执行多个并行操作。Spark
最吸引人的地方在于它提供的弹性分布数据集(RDD),那是一个按照聚类的节点进行分区的元素的集合,它可以在并行计算中使用。RDDs 可以从一个 Hadoop
文件系统中的文件(或者其他的 Hadoop 支持的文件系统的文件)来创建,或者是驱动程序中其他的已经存在的标量数据集合,把它进行变换。用户也许想要 Spark
在内存中永久保存 RDD,来通过并行操作有效地对 RDD 进行复用。最终,RDDs 无法从节点中自动复原。
Spark 中第二个吸引人的地方在并行操作中变量的共享。默认情况下,当 Spark
在并行情况下运行一个函数作为一组不同节点上的任务时,它把每一个函数中用到的变量拷贝一份送到每一任务。有时,一个变量需要被许多任务和驱动程序共享。Spark
支持两种方式的共享变量:广播变量,它可以用来在所有的节点上缓存数据。另一种方式是累加器,这是一种只能用作执行加法的变量,例如在计数器中和加法运算中。
有哪些微博数据分析工具可以推荐
有 在微博里搜索 微知 这个应用。。 可以分析一条微博 被什么人转发 有没有水军 这些
excel数据分析工具的有哪些
SQL
楼主说的工具指的是excel本身的吗 还是指数据分析需要的啊
①日常数据运营指标的监控
日常数据运营指标,如下载用户数、新增用户数、活跃用户数、付费用户数等,这些数据都是运营中最基础最基本的数据,是大Boss们最关注的核心指标。
②渠道分析
对于一个上升期或者衰退期的APP,运营团队会尽可能寻找大量的渠道来引流,吸引新用户的关注。互联网的渠道很多,通常有竞价渠道(百度、搜狗、应用商店)、SEO渠道(百度、搜狗)、新媒体渠道(微信公众号、微博、抖音)、网盟广告渠道(百度网盟、阿里妈妈)、移动端付费渠道(今日头条、腾讯广点通)、免费渠道(QQ群、微信群、贴吧、问答平台、应用商店)、直播平台(虎牙直播、映客)等。
③活跃用户分析
一个产品不可能满足所有用户,鱼和熊掌不可兼得,用户之所以成为了活跃用户,必然是产品已经满足了一定的用户需求。活跃用户分析中,反映粘性和活性的指标,都值得细致研究。
④用户画像分析
用户画像其实就是用户信息的标签化。如性别、年龄、手机型号、网络型号、职业收入、兴趣偏好等等。用户画像分析的核心工作就是给用户打标签,通过人制定的标签规则,给用户打上标签,使得能够通过标签快速读出其中的信息,最终做标签的提取和聚合,形成用户画像。
⑤产品核心功能转化分析
当用户向您业务价值点方向进行了一次操作,就产生了一次转化。这里的业务价值点包括但不限于完成注册、下载、购买等行为。在互联网产品和运营的分析领域中,转化分析是最为核心和关键的场景。
⑥用户流失分析
流失用户召回是运营工作中的重要部分,定义流失用户是用户流失分析的起点。用户流失是一个过程不是一个节点,流失用户在正式停止使用产品之前会表现出一些异常行为特征:访问频次大幅降低,在线时长大幅下降,交互频率大幅降低等。
⑦用户生命周期分析
在APP用户的整个生命周期中,从用户价值贡献的角度可以分为4个不同的时期,分别是考察期、形成期、稳定期和衰退期。每个时期的用户给APP带来不同的价值。
该用哪一款APP数据分析工具?借助APP数据分析工具我们可以看到新增用户、活跃用户、人均启动次数、平均使用时长等APP数据指标。
电脑培训发现第三方统计工具对于APP运营的重要性,但新人往往不知道有哪些APP统计优化统计工具。
1、友盟统计工具2016年初由友盟、CNZZ、缔元信.网络数据三家国内大数据公司合并而成。
目前是国内开发者使用最为广泛的的应用统计工具之一,准确性方面,友盟统计使用的是自己的umid策略,可以过滤掉刷量的数据,因此准确性还是不错的。
2、TalkingData移动应用统计TalkingData移动应用统计2011年9月成立,对于这款应用统计工具,某知乎网友认为开发者如果是做国内市场的话,可以考虑,因为TalkingData除了对传统应用统计的支持,还有专门给游戏做的统计平台,以及appcpa这样的渠道质量大杀器。
3、百度移动统计工具搜索引擎巨头百度旗下的产品,2012年4月份上线,产品性质为免费,其核心功能有受众分析与用户分群、使用行为分析、终端分析、渠道和版本分析、自定义事件、错误分析这七大核心功能组成,当然特色分析自然包括用户留存分析、页面访问流分析等。
4、Flurry移动应用数据工具(国外)Flurry是国外的一个免费的移动应用数据分析平台,可应用于iOS、Android、WindowsPhone、HTML5、Hybrid应用、移动Web、BlackBerry和JaME。
据用户向蝉大师ASO工具平台反应,单纯从移动应用的数据统计功能来看,Flurry处于领先位置。
其功能模块设置合理,分析维度全面,分析流程易于理解,感兴趣的朋友不妨试试。
5、魔方应用数据统计工具魔方是太平洋网络集团(PCGROUP)推出的专业移动应用服务平台,其核心功能是实时统计与渠道统计,实时统计方面,可以分析应用“新增用户、活跃用户、启动次数、使用时长”等情况,帮助您分析用户增长的总体趋势、使用规律等。
渠道统计方面,可以分析各应用市场的新增用户、启动用户,评估渠道投放的价值;分渠道查看推广情况。